
 Page 1Application Note 2007-020

Introduction
The LINT tool is used to check language errors and
potential design issues (race condition, un-synthesizable
design, unnecessary components, etc.) in a logic design.
Since it can detect potential design issues (which would
emerge much further downstream) in the early stages of
design, the LINT tool can greatly improve the effi ciency
of logic design. Turbolint produced by Simucad was such
a tool. Turbolint was embedded into the new SILOS-X as
a LINT function. Because of this, SILOS-X is not just a
simulation tool, but also a powerful tool in helping improve
design quality. With examples, this article analyzes how
the LINT function does the job.

LINT Capability
Almost every simulation tool can do basic syntax and
semantic check. However, passing such a check only
shows that a design is grammatically correct, but tells
little about the quality of the design. LINT function has
many more check rules and checks many more categories
than syntax and semantic:

(1), LINT checks possible race condition in a design.

Example:

module m(clk, a, z_r);

input clk;

input a;

output z_r;

reg z_r;

reg q_r;

always @(posedge clk) begin

z_r = q_r;

end

always @(posedge clk) begin

q_r = a;

end

endmodule

In this example, there are two always blocks, one that
reads reg “q_r” and the other that writes the reg. The order
of evaluation of the always blocks is not deterministic so
the read can occur either before or after the write. The
two orders of execution (read-then-write and write-then-
read) can yield different results in simulation. Hence, this
is a Verilog race condition, which LINT will catch.

(2) LINT performs hardware analysis

LINT gives warnings when registers, latches, state-
machines and other sequential elements are inferred.
One therefore can check whether extra synchronous
hardware was synthesized where not wanted.

Example:

module m(SELECT, IN_A, IN_B, X, Y);

input [1:0] SELECT;

input IN_A;

input IN_B;

output X;

output Y;

reg X;

reg Y;

always @(SELECT or IN_A or IN_B) begin

 if (SELECT==2’b00) begin

 X = IN_A | IN_B;

 Y = 0;

 end

 else if(SELECT ==2’b01) begin

 Y = IN_A & IN_B;

 end

 else if (SELECT==2’b10) begin

 X = 0;

 Y = 1;

LINT Your Design
with SILOS-X

Application Note

 Page 2 Application Note 2007-020

 end

 else begin

 X = 0;

 Y = 0;

 end

end

endmodule

In this example, assignment expression to X is not defi ned
when SELECT = 2’b01, therefore a latch will be generated
to hold the value of X for that case. LINT will remind users
of this issue for further checking.

LINT also points out un-synthesizable designs and
designs that may cause mismatched simulation results
before and after synthesize.

(3), LINT checks for DFT

Design For Test (DFT) is very important for a successful
design. It can facilitate fault test and improve the quality
of a design. LINT catches suspicious parts in a design
that may be diffi cult or impossible to test.

In this design, since the clock pin of the second FF can not
be directly controlled from an external input port, the scan
insert tool will exclude this FF from the scan. So it will be
diffi cult to detect faults for this part using the ATPG tool.
LINT will point out this issue at a very early stage.

(4), LINT can improve the portability and readability
of a design.

LINT has checking rules to help users to write more
readable and easily maintained designs.

Example:

 output [31: 0] X;

In this example, LINT will give a suggestion to defi ne a
constant with the numerical value and use the constant
rather than using the hard-coded numerical constant
directly. Particularly when such a constant appears in
many places, using a defi ned constant can make mainte-
nance much easier.

Example:

 Reg Abc;

 Reg abc;

In this case, LINT will warn that identity names are dis-
tinguished by lower or upper cases, which is error prone
and makes the code diffi cult to read.

Above we listed several categories that LINT checks,
but not all. The LINT function in SILOS-X has more than
500 check rules and can also check design compatibility
with STARC.

Conclusion
The previous examples show that the LINT function is
powerful in improving design quality and effi ciency. For
inexperienced designers, LINT is especially helpful in
teaching them how to write a design in the correct style
and how to avoid potential mistakes. For experienced
designers, LINT can improve their design effi ciency by
catching suspicious code in a complicated design and
help to improve the quality of the code. So, with LINT,
SILOS-X becomes a powerful design tool. All designers
should learn to take advantage of this function to improve
their design quality.

Figure 1.

